Detecting Intra-Room Mobility with Signal Strength Descriptors

Authors: Konstantinos Kleisouris
Bernhard Firner
Richard Howard
Yanyong Zhang
Richard Martin
What is Radio-Based Mobility Detection?

- Detect when a transmitter moves
 - By observing signal strength
 - Detection done by receiver
- Radio-Based because
 - Detection **only** based upon radio signal from the target
 - No sensor hardware needed
 - No accelerometers, etc
 - The transmitter does not need to interact in the mobility detection, other than by transmitting.
 - Can monitor a transmitter without it sending any special data
Motivations for Radio-Based Mobility Detection

- Mobility detection is useful
 - Security
 - Usage detection
 - Fills in gaps in other technology
 - Localization is not accurate at intra-room distances
 - Motion sensors use too much energy/are too costly in many systems

- Find a universal approach to mobility detection
 - Without specialized hardware
 - With minimal or no training
 - In changing environments
 - Across different frequencies, hardware, and environments
Related Work

- **Location Distinction**
 - Similar to mobility detection
 - Not robust to changing environments
 - Requires many training measurements
 - Requires data unavailable on commodity hardware

- **Mobility Detection**
 - Mobility detection using RSS variance
 - 802.11 network with 1 to 3 APs
 - Effects of differing latency are studied

Our Approach

- Focus on mobility at the room level
 - Inside a room, in and out of a room
 - Using received signal strength (RSS)
 - Differentiate variance from transmitter motion from environmental motion

- Evaluate effects of various parameters
 - Transmission rate
 - Allowed prediction latency
 - Number of receivers
 - Complexity of multipath environment
Causes of Signal Strength Variations

- With no movement (environmental stability) RSS at a receiver is steady.

![Graph showing RSS vs Distance with Path Loss, Shadowing, and Multipath Fading](image)

![Diagram illustrating signal transmission between Transmitter and Receiver](image)
Causes of Signal Strength Variations

- If the transmitter moves, all components of the signal change
Causes of Signal Strength Variations

- An object moves (environmental instability)
 - Possible cause of false positive
 - shadows the signal
 - changes the multipath environment

![Graph showing RSS vs Distance with Path Loss, Shadowing, and Multipath Fading]
Causes of Signal Strength Variations

- An object moves (environmental instability)
 - Possible cause of false positive
 - shadows the signal
 - changes the multipath environment
Causes of Signal Strength Variations

- An object moves (environmental instability)
 - Possible cause of false positive
 - shadows the signal
 - changes the multipath environment
Using RSS Descriptors for Mobility Classification

- Descriptor – statistic of RSS measurements over time
- Three descriptors are tested
 - Standard deviation (σ) of received signal strength (RSS)
 - Absolute change in mean RSS (ΔRSS)
 - Histogram distance of RSS using the Earth Mover's Distance (EMD)
 - An ensemble of the three is also tested
- The average value from multiple receiver is compared to a threshold for mobile/immobile classification
 - Classification tool (JRip) determines best threshold
 - Uses 10-fold cross-validation
Calculating RSS Descriptor Values

- **σ RSS**
 - The standard deviation is taken across two time windows.

- **Δ RSS**
 - The absolute value of the difference between the mean RSS for window 1 and for window 2 is calculated.

- **EMD**
 - The number of steps to change a histogram of RSS values in time window 1 into the histogram for time window 2.
Evaluating RSS Descriptors - Methodology

- We will test descriptor performance with several events
 (1) Movement in close proximity to the transmitter, called *local instability*
 (2) Movement in the room with the transmitter, called *global instability*
 (3) Transmitter *mobility*
 (4) Antenna orientation changes

- All of these will be tested with a Wi-Fi and a 902.1 MHz (active RFID) transmitter and multiple receivers.
Environment

- Two rooms are used
 - A conference room for testing
 - Very empty – ideal environment
 - A storage room for testing universal applicability
 - Very cluttered – Techniques like localization do not work here
Test Topology

Conference Room

Storage Room
Small Mobility Test

- Evaluate how RSS changes under different conditions
 - Stability (empty room)
 - Global Instability (people walk around the room)
 - Local Instability (object moves near the transmitter)
 - Mobility (object moves)
- Approximately 20 – 50 events for instability and mobility and 10's of minutes of stability data
- Performed in the conference and storage rooms
Large Mobility Test

- Only stability and mobility
- Three mobility routes were used
 1. Linear
 2. Triangular
 3. Triangular moving inside and outside of the room
- Intervals between movement were 15 seconds, 1 minute, 3 minutes, or 10 minutes.
- 930 mobility events recorded in total.
- 13 hours of stable environment data
- Only done in the conference room
Metrics

- Treated as a detection problem
 - Did mobility occur in time window (from T_0 to T_N)?

- Recall
 - Percent of mobility events correctly identified

- Precision
 - Likelihood that a mobility prediction actually matches a real mobility event

- F-Measure
 - Way to compare different thresholds with different recall and precision values
Threshold-Based Mobility Detection

- A mobility event is classified when a descriptor goes above the threshold.
- The event does not end until the descriptor goes below the threshold.
- If this identifies two events as a single event then we consider the second event missed.
Small Test – Wi-Fi, Conference Room

- Window size of 2 seconds and packet rate of 10 packets per second
- Standard deviation shows the sharpest differences between events
 - Best results with $\sigma_{RSS} = 3.43$
Window size of 3 seconds and packet rate of 1 packet per second

RFID very similar to Wi-Fi, despite the different frequency and packet rates

□ Best results with σ RSS = 4.58
Small Mobility Test Results – Conference Room

![Graph showing Wi-Fi and RFID results over time.](image-url)
Small Mobility Test Results – Conference Room

Wi-Fi

RFID

Local Movement, Transmitter immobile
Train on the peaks during mobility compared to peaks that occur during immobility.
σ RSS is the best mobility detector

- For Wi-Fi and RFID
- Wi-Fi has slightly better results
Impact of Packet Rate upon Detection (Wi-Fi)

- High packet rates are better
- Only slightly
Impacts of Window Size upon Latency and Detection (Wi-Fi)

- Window sizes the same duration as mobility events are best
- Latency is proportional to duration of mobility events
Large Test – Threshold Value Works for Both Environments

- Conference room
 - Threshold and results determined from 10-fold cross-validation

- Storage room
 - No training done
 - Used threshold from conference room
 - Test applicability of threshold across different environments
Large Test – Threshold Value Works for Both Environments

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Precision</th>
<th>Recall</th>
<th>F-measure</th>
<th>Window Size (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conference Room</td>
<td>RFID</td>
<td>0.851</td>
<td>1</td>
<td>0.919</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Δ RSS</td>
<td>0.930</td>
<td>0.965</td>
<td>0.947</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>EMD</td>
<td>0.933</td>
<td>0.981</td>
<td>0.956</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>ensemble</td>
<td>0.950</td>
<td>0.994</td>
<td>0.977</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>0.984</td>
<td>0.999</td>
<td>0.991</td>
<td>2</td>
</tr>
<tr>
<td>Storage Room</td>
<td>RFID</td>
<td>0.802</td>
<td>1</td>
<td>0.890</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>0.874</td>
<td>1</td>
<td>0.932</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.840</td>
<td>1</td>
<td>0.913</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.846</td>
<td>.991</td>
<td>0.912</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Wi-Fi</td>
<td>.981</td>
<td>1</td>
<td>.990</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>σ</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>
Large Test – Threshold Value
Works for Both Environments

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Precision</th>
<th>Recall</th>
<th>F-measure</th>
<th>Window Size (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conference Room</td>
<td>RFID</td>
<td>σ</td>
<td>0.972</td>
<td>0.986</td>
<td>0.979</td>
</tr>
<tr>
<td></td>
<td>Δ RSS</td>
<td>0.950</td>
<td>0.994</td>
<td>0.977</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>EMD ensemble</td>
<td>0.933</td>
<td>0.981</td>
<td>0.956</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Wi-Fi</td>
<td>σ</td>
<td>0.984</td>
<td>0.999</td>
<td>0.991</td>
</tr>
<tr>
<td></td>
<td>Δ RSS</td>
<td>0.974</td>
<td>0.987</td>
<td>0.987</td>
<td>2,3</td>
</tr>
<tr>
<td></td>
<td>EMD ensemble</td>
<td>0.915</td>
<td>0.992</td>
<td>0.952</td>
<td>8</td>
</tr>
<tr>
<td>Storage Room</td>
<td>RFID</td>
<td>σ</td>
<td>0.874</td>
<td>1</td>
<td>0.932</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.840</td>
<td>1</td>
<td>0.913</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.846</td>
<td>.991</td>
<td>0.912</td>
</tr>
<tr>
<td></td>
<td>Wi-Fi</td>
<td>σ</td>
<td>.981</td>
<td>1</td>
<td>0.990</td>
</tr>
</tbody>
</table>

WINLAB
WIRELESS INFORMATION NETWORK LABORATORY
The Effect of the Number of Receivers

- 2.4GHz @ 10 packets/second
- 902.1MHz @ 1 packet/second

F-Measure vs. Basestations graph.
Antenna Orientation Test -- Wi-Fi

Descriptor peaks from rotations
Antenna Orientation – RFID
Changes in Orientation can Appear Similar to Mobility

- Orientation changes do cause descriptor peaks
 - From antenna directionality
 - Not as high as true mobility
Conclusions

- Mobility detection can be done without special hardware "for free" in existing networks
 - A standard deviation descriptor and a threshold can predict mobility across different frequencies and environments
 - Single threshold gives acceptable results in multiple environments
 - Very high recall (> 99%) for tested systems
 - Without retraining in the new environment
 - Different devices need different thresholds
 - Mobility of a transmitter can be distinguished from mobility in the environment